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Introduction

Theorem (The Prime Number Theorem): π (x) ∼ x
log x

, where π (x) is the prime counting

function. Equivalently,
∑

n≤x Λ (x) ∼ x, where Λ is the von Mangoldt function.

The prime number theorem needs no introduction. Perhaps the most intuitive interpre-
tation of it is a probabilistic one, for the asymptotic on π (x) in some sense describes the
distribution of prime numbers among the integers. Importantly, sharp error terms in these
asymptotics are not yet known, though they can be improved significantly by assuming the
(generalised) Riemann hypothesis.

A natural thing to wonder is if this theorem can be used to prove things about patterns
involving multiple primes, such as the twin prime conjecture. At first glance, the “density”
of primes p less than x such that p+ 2 is also prime should be about x

log2 x
: if p is a random

integer between 1 and x, it has a 1
log x

chance of being prime, and likewise for p+ 2.

The issue, of course, is that the events of a random number p being prime and p+2 being
prime are not independent; in fact, the fact that twin primes aren’t asymptotic to x

log2 x
is

verifiable numerically. Rather, there should be some corrective term or factor that adjusts
the asymptotic in light of this probabilistic dependence. The Hardy-Littlewood conjecture
does just that: it provides a concrete (though unproven) guess about what that corrective
term should be.

To formalise this, we will let k ≥ 2 and set H = (a1, . . . , ak) for distinct integers a1
through ak. For prime numbers p, define the function vp (H) to be the number of distinct
residue classes modulo p that the elements of H occupy. Finally, let P (x;H) denote the
number of integers n ≤ x such that n + aj is prime for all j = 1, . . . , k. For H = (0, 2), for
instance, P (x;H) counts the number of twin primes below x.

Conjecture (Hardy-Littlewood): P (x;H) ∼ G (H)x log−k x, where

G (H) =
∏

p prime

(
1− vp (H)

p

)(
1− 1

p

)−k

.

Here, G (H) is intuitively the “corrective factor” that adjusts for probabilistic dependence.
Notice that if vp (H) = p for any p, then G (H) = 0; this reflects the fact that no matter
what n is, one of the n + aj’s will be congruent to 0 mod p, and thus P (x;H) is finite for
all x.

This probabilistic introduction, though helpful for visualising and rationalising this con-
jecture, is not entirely rigourous and is rather heuristic. In [1], Hardy and Littlewood take a
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rather different and frankly opaque approach that we will be describing in this paper. The
probabilistic interpretation is not without merit, however, and we refer the reader to [2] and
[3] for more developed discussions and results related to this perspective.

The Conjecture

This section closely follows section 56.2 (starting on page 54) in [1], which is the paper where
Hardy and Littlewood first proposed and explained their conjecture.

When proving the prime number theorem, a common approach is to tackle the partial
sums

∑
n≤x Λ (x) rather than directly tackling π (x). In a similar vein, rather than directly

tackling P (x;H), Hardy and Littlewood tackled the sum∑
n≤x

Λ (n+ a1) Λ (n+ a2) · · ·Λ (n+ ak) .

This sum detects when n+ aj are all prime powers rather than true primes. However, as is
common in such approaches, the contribution from the non-prime prime powers is negligible
compared to those of the true primes.

Sums of the form
∑

n≤x Λ (n) and
∑

n≤x Λ (n)χ (n) for some character χ are far more
well-understood, and the idea is to cleverly split the more complicated sum into simpler,
more manageable sums. This is done using a circle method-esque argument: the sum of
interest is related to the coefficients of a Fourier series, and the Fourier series is hopefully
more manageable than the original sum. For brevity’s sake, we will assume some basic
familiarity with the circle method.

First, we introduce the modified sum

fH (z) =
∑
n≤x

Λ (n+ a1) · · ·Λ (n+ ak) z
n,

where z is a complex parameter. When |z| < 1, the sum converges, but when |z| > 1, the
sum diverges as x → ∞. We are interested in the behaviour of fH as |z| gets close to 1. Of
note is when z is a root of unity: the zn term then acts as a character (or sum of several
characters). More broadly, letting z = exp (2πiα) for a real parameter α turns the sum into
a Fourier series.

To these ends, let p0 and q0 be coprime positive integers.

rakfH

(
r2e

(
p0
q0

))
=
∑
n≤x

Λ (n+ a1) · · ·Λ (n+ ak) r
2n+ake

(
np0
q0

)
,
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where e
(

p0
q0

)
= exp

(
2πip0

q0

)
. Serendipitously notice that this is exactly the integral

=

∫ 1

0

∑
n≤x

Λ (n+ a1) · · ·Λ (n+ ak−1) r
ne

(
nφ+

np0
q0

)×

∑
m≤x

Λ (m+ ak) r
m+ake

(
− (m+ ak)φ

) e (akφ) dφ.

Upon distributing the two sums, the summand becomes a product of k Λ’s, though the last
term is no longer “aligned” with the first k − 1 terms from the first sum. This is where the
exponentials come in: when the terms are combined, one has a factor of e

(
(n−m)φ

)
that

depends on φ. After integrating, any terms where n ̸= m vanish, leaving precisely the sum
from before. Note that we may swap the sums and the integral freely. The two sums in the
integrand closely resemble fH: shifting the second sum yields

=

∫ 1

0

fH\{ak}

(
re

(
φ+

p0
q0

))
f(ak)

(
re (−φ)

)
e (akφ) dφ.

This manipulation has allowed us to express fH in terms of simpler sums. In particular,
f(ak)

(
re (−φ)

)
=
∑

n≤x Λ (n) rne (−nφ), and when φ is close to a rational number, e (−nφ)
is suspiciously manageable.

The following treatment of this approximation is based on chapter 26 of [4] and in [5],
though we deviate slightly in accounting for the extra factor of rn. These two sources
specifically discuss Vinogradov’s theorem regarding sums of three primes, wherein the sum∑

n≤x Λ (n) e (−nφ) plays a large role. Many of the bounds and asymptotics for this sum
are applicable in this setting, too.

WriteM (q, p) as a real interval of unspecified width (to be made arbitrarily small) centred
at p

q
, where p and q are relatively prime. These intervals are taken modulo 1 so that each

M (q, p) ⊆ [0, 1]. Notably, the widths of these intervals can be specified uniformly for all
p, q ≤ P for some (similarly unspecified) number P . These bounds and widths are chosen so
that the union of all M (q, p)’s is not all of [0, 1], and so that each M (q, p) is disjoint. These
constitute the “major arcs”.

For φ ∈ M (q, p), write φ = p
q
+ θ for θ very small compared to 1− r. Then,

f(ak)
(
re (−φ)

)
=
∑
n≤x

Λ (n) e

(
−np
q

)
rne (−nθ) .

The idea is to rewrite e
(
−np

q

)
in terms of Gauss sums and characters modulo q. The

contribution from terms with (n, q) > 1 is O
(
log2 x

)
; when (n, q) = 1, we have that

1

ϕ (q)

∑
χ

τ (χ̄)χ (−np) = e

(
−np
q

)
,
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where χ ranges over all characters mod q and τ (χ̄) is the Gauss sum
∑

a∈Z/qZ× χ̄ (a) e
(

a
q

)
.

Inserting this into the big expression yields

f(ak)
(
re (−φ)

)
=

1

ϕ (q)

∑
χ

τ (χ̄)χ (p)
∑′

n≤x

χ (−n) Λ (n) rne (−nθ) +O
(
log2 x

)
.

Here, the
∑′ indicates that n ranges over integers prime to q. We handle the trivial character

χ0 and the nontrivial characters separately. Let N = ⌊x⌋. Apply summation by parts to the
inner sum:∑′

n≤x

Λ (n)χ (−n) rne (−nθ) = rNe (−Nθ)ψ (x, χ̄)− (log r − 2πiθ)

∫ N

1

rte (−tθ)ψ (t, χ̄) dt.

Here, we used χ (−n) = χ̄ and the Chebyshev function ψ (x, χ) =
∑

m≤x Λ (m)χ (m). Using
standard estimates on ψ when χ ̸= χ0, we obtain the bound

= O

((
1 +|log r − θ|N

)
N exp

(
−c
√
logN

))
,

where c is a constant depending only on N and q. We refer the reader to [4] §19, §21, and §22
for more details on formulae and bounds on ψ. Write T (θ) =

∑
n≤x r

ne (−nθ), a geometric
series; we have that∑′

n≤x

Λ (n)χ0 (−n) rne (−nθ) = T (θ) +O

((
1 +|log r − θ|N

)
N exp

(
−c
√
logN

))
,

with the gritty details left as an exercise. Just kidding, please see [4] or [5] for the full
argument. The key is that the χ0 term in the outer sum dominates the other terms; using
τ (χ0) = µ (q) (where µ is the Möbius function) and

∣∣τ (χ)∣∣ ≤ √
q otherwise, we arrive at the

bound

f(ak)
(
re (−φ)

)
=
µ (q)

ϕ (q)
T (θ) +O

((
1 +|log r − θ|N

)
N
√
q exp

(
−c
√
logN

))
.

Finally, using the fact that r is close to 1 and θ is close to zero allows one to simplify this

bound and rewrite T (θ) = 1−rNe(−Nθ)
1−re(−θ)

∼ 1
1−r

so that

f(ak) ∼
µ (q)

ϕ (q)
· 1

1− r
,

with an error term of the form O
(
N exp

(
−c′

√
logN

))
, where c′ is some constant depending

only on N and q.

It is at this point that Hardy and Littlewood (somewhat implicitly) posed two critical
assumptions. First, we assume that the contribution of∫ 1

0

fH\{ak}

(
re

(
φ+

p0
q0

))
f(ak)

(
re (−φ)

)
e (akφ) dφ
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is small outside the major arcs. This allows us to relate the asymptotic of fH to the asymp-
totic along the major arcs, which we described above. Second, they assumed that asymptotics
for fH existed to begin with, and they labeled

fH
(
re (α)

)
∼ gH (α)

1− r

for some function gH depending on the real parameter α. Notably, g(ak)

(
p
q
+ θ
)
for θ ≪ 1−r

is precisely µ(q)
ϕ(q)

, as determined above.

By using the integral relationship and using the asymptotics assumed and/or derived on
the major arcs, one arrives at the following:

rakfH

(
r2e

(
p0
q0

))
=

∫ 1

0

fH\{ak}

(
re

(
p0
q0

+ φ

))
f(ak)

(
re (−φ)

)
e (akφ) dφ

∼
∑
p,q

µ (q)

ϕ (q)
· gH\{ak}

(
p

q
+
p0
q0

)
e

(
akp

q

)∫
M(q,p)

dθ(
1− re (θ)

) (
1− re (−θ)

)
∼ 1

1− r2

∑
p,q

µ (q)

ϕ (q)
· gH\ak

(
p

q
+
p0
q0

)
e

(
akp

q

)
Here, the sum ranges over all p, q within the major arcs. Since r is “very close” to 1, we

may ignore the rak term in the front. In addition, we had assumed that fH

(
r2e
(

p0
q0

))
∼

gH

(
p0
q0

)
· 1
1−r2

, and this produces a recurrence relation between the g’s. When p0 = 0, i.e.

when we’re observing the behaviour of fH
(
r2
)
, one gets the relationship

gH (0) ∼
∑
p,q

µ (q)

ϕ (q)
· gH\{ak}

(
p

q

)
e

(
akp

q

)
.

Hardy and Littlewood then examined this recurrence relation and solved it to produce the
asymptotic proposed in their conjecture; for these computations, we refer the reader to [1]
(see pg. 55 and 56).

Author’s note: reading [1] was difficult, and Hardy and Littlewood provided few expla-
nations and computations for certain bounds and asymptotics, particularly those involving
f(ak). We have reverse-engineered these steps by adapting Vinogradov’s arguments and
bounds, though we make no guarantees for their validity.

The Technique in Practise

Three main difficulties arise when applying these techniques and arguments to concrete prob-
lems. First, justifying that the contribution to the integral from the minor arcs does not
dominate the error term in the major arcs is often difficult, and this point was assumed by
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Hardy and Littlewood in [1]. Second, ensuring that the error terms in the major arcs them-
selves don’t dominate the main asymptotic can be especially difficult, even when assuming
the Riemann Hypothesis (which affords sharper bounds on ψ). Third, and most importantly,
many results only specify upper bounds on these integrals. In certain applications (as we
shall soon see), these upper bounds are enough; however, they do not guarantee a precise
asymptotic like what Hardy and Littlewood conjectured.

It is tempting to apply a similar argument or perform similar manipulations when k is
very small, say k = 2. This means we only need to split the sum once. Consider H = (0, 2),
which corresponds to the twin prime problem.

∑
n≤x

Λ (n) Λ (n+ 2) =

∫ 1

0

∑
n≤x

Λ (n) e (nφ)

∑
m≤x

Λ (m+ 2) e
(
− (m+ 2)φ

) e (2φ) dφ.

Writing S (φ) =
∑

n≤x Λ (n) e (nφ), we may rewrite this as∑
n≤x

Λ (n) Λ (n+ 2) =

∫ 1

0

S (φ)S (−φ) e (2φ) dφ.

Write m for the minor arcs; näıvely applying the triangle inequality yields an upper bound
of order x log x for

∫
m

∣∣S (φ)S (−φ)
∣∣ dφ: this is because∑k≤x Λ (x)2 ∼ x log x. However, the

asymptotic we want for the sum is on the order of x log−2 x, which is somewhat off. One
may attempt to improve this bound by instead trying∣∣∣∣∫

m

S (φ)S (−φ) e (2φ) dφ
∣∣∣∣ ≤ sup

m

∣∣S (φ)
∣∣ ∫

m

∣∣S (−φ)
∣∣ dφ,

where the sup is upper-bounded by x log−A x for some constant A (see [4], §25) while the
integral is bounded by x. However, the resultant upper bound is still x2 log−A x, which is
actually worse than the näıve bound. In general, it appears that the best upper bounds
for these integrals for an arbitrary k-tuple with k > 1 will be xk−1, possibly with a nice
logarithmic factor; unfortunately, these will dominate the asymptotic of x log−k x.

Let us now bring attention to an application of this technique to a significantly less
restrained problem involving primes. Specifically, we consider the ternary Goldbach conjec-
ture, which states that every odd integer bigger than 5 is the sum of three primes. Define
the function

r (N) =
∑

k1+k2+k3=N

Λ (k1) Λ (k2) Λ (k3) .

This “detects” prime powers k1, k2, k3 whose sum is N ; in the limit as N → ∞, the con-
tribution from composites becomes negligible. Hardy and Littlewood were able to deduce
the follow theorem of Vinogradov by assuming the Riemann hypothesis, but the theorem is
named after Vinogradov because he was able to prove it without such a huge assumption.

Theorem (Vinogradov’s Theorem (one of them)): For all A > 0,

r (N) =
G (N)N2

2
+O

(
N2 log−AN

)
,
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where G (N) is given by

G (N) =
∏
p|N

(
1− 1

(p− 1)2

)∏
p∤N

(
1 +

1

(p− 1)3

)
.

Note that this G (N) is different from G (H) defined earlier; please forgive the author,
as both are standard notation. Importantly, G (N) is bounded both above and below by
constants, meaning that when N is sufficiently large, r (N) is certainly positive. That is to
say, every sufficiently large N is expressible as the sum of three primes.

The argument that Vinogradov gave utilised the Hardy-Littlewood circle method. Write
S (φ) =

∑
n≤N Λ (n) e (nφ) for real φ, and notice that

r (N) =

∫ 1

0

S (φ)3 e (−Nφ) dφ.

This is because upon expanding the cubed series in the integrand, one sees that

S (φ)3 e (−Nφ) =
∑

k1,k2,k3≤N

Λ (k1) Λ (k2) Λ (k3) e
(
(k1 + k2 + k3 −N)φ

)
,

and the only terms without an exponential are those where k1 + k2 + k3 = N . Treating the
major arcs for this integral is more or less identical to that in the previous section; when
treating the minor arcs, one bounds

sup
m

∣∣S (φ)
∣∣ ∫

m

∣∣S (φ)
∣∣2 dφ.

The sup produces a bound of x log−A x while the integral produces a bound of x log x; these
together form the desired asymptotic.

Soon after, van der Corput [6] was able to slightly modify the argument to produce the
following result:

Corollary: There exist infinitely many prime triplets p1, p2, p3 lying in a nontrivial arith-
metic progression.

The manuscript is in German, and the author is unable to find a translation. However,
it appears that appealing to the integral∫ 1

0

S (φ)2 S (−2φ) dφ

could produce this result: expanding the sum picks out prime powers k1, k2, k3 such that
k1 + k2 = 2k3, i.e. that the three numbers lie in arithmetic progression. This integral can be
bounded with the same techniques that Vinogradov used.

In the 1980s, Heath-Brown [7] gave a generaliation as follows:
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Theorem: There exist infinitely many primes p1, p2, p3 and an almost-prime p4 having at
most two prime factors all lying in a nontrivial arithmetic progression.

When trying to get four primes in progression, the natural thing to do is to write∑
k1,k2,k3,k4≤N
k1+k3=2k2
k2+k4=2k3

Λ (k1) Λ (k2) Λ (k3) Λ (k4) =

∫ 1

0

∫ 1

0

S (α)S (−2α + β)S (α− 2β)S (β) dα dβ.

Upon expanding the integrand, the condition that k1 + k3 = 2k2 is captured by the cancel-
lation of exponentials involving α; similarly, the condition that k2 + k4 = 2k3 is captured
by the cancellation of exponentials in β. However, applying the bounds Vinogradov gave is
fruitless, for it appears to (at best) give an error term on the order of N3 log−AN while the
sum should be bounded by 1

2
G (N)N2. Even when assuming the Riemann hypothesis, these

error terms still remain comparable to the sum itself.

Instead, Heath-Brown relaxed these constraints further by allowing k1 or k4 to have at
most 2 prime factors. This was done by using standard linear sieve methods, but those
arguments are beyond the scope of this paper. Combining such methods with the circle
method gave Heath-Brown the right amount of refinement on the error terms.

Adjacent and Related Results

The first thing to note is that the Hardy-Littlewood conjecture is still very open. We
shall detail some statements that bring us closer to the conjecture; however, none of these
results provide concrete asymptotics the way Hardy and Littlewood did, and they all are
considerably weaker than their conjecture. Nevertheless, the progress that has been made is
somewhat astounding, and they are worth mentioning and appreciating.

First, Vinogradov did not specify what “sufficiently large” meant. By closely following
his arguments, a numerical limit of N > 101370 was determined as “sufficiently large”, and
since the ternary Goldbach conjecture had, at some point, been verified for all integers up to
1020, the only obstruction to this conjecture was computational power. In 2013, Helfgott [8]
used sieve methods to refine the bound on minor arcs, thereby reducing the computational
load required, ultimately resulting in a (currently unverified?) proof of the ternary Goldbach
conjecture.

Around the same time Helfgott announced his proof, Yitang Zhang [9] proved the as-
tounding result that lim infn→∞ (pn+1 − pn) < ∞, where pn is the n-th prime number. He
produced the explicit bound of 7× 107, but this has subsequently been sharpened to 246 or
lower since. This result followed a similar result from Goldston, Pintz, and Yıldırım [10],
who proved the weaker form

lim inf
n→∞

pn+1 − pn
log pn

= 0

in 2005. This result was strengthened by the same authors not long after, though not to the
extent that Zhang did.
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And finally, in 2008, Ben Green and Terence Tao [11] proved that the primes contain
arbitrarily long arithmetic progressions, which is now known as the Green-Tao theorem.
The closest result to this was Heath-Brown’s result on progressions of 3 primes and a fourth
“almost-prime”, though none of these results provide an asymptotic like the one conjectured
by Hardy and Littlewood.

Hardy, Littlewood, Ramanujan, and Vinogradov were all incredibly prolific and active
around 100 years ago; the conjectures and questions they tackled were older yet. It seems
that despite the astounding progress within the past half-century, their conjectures remain
wide open and unapproachable by modern techniques.
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