
The Ramanujan-Petersson Conjecture
Hunter Liu

Introduction

One of the first examples of a nontrivial cusp form (on SL2(Z)) is the function ∆ =
q
∏∞

n=1 (1− qn)24, a cusp form of weight 12. Ramanujan studied this function, specifically
the Fourier coefficients ∆ =

∑∞
n=1 τ(n)q

n. By computing the first 30 or so values of τ(n)
and finding patterns, Ramanujan proposed the following conjecture:

Conjecture: For all n,m coprime, τ(nm) = τ(n)τ(m) (i.e., τ is multiplicative). In ad-
dition, for all primes p and positive integers n, one has τ (pn+1) = τ (pn) τ(p) − p11τ (pn−1)

and |τ(p)| ≤ 2p
11
2 .

The first two conditions are equivalent to producing a factorisation of the L-function
associated to ∆, where one gets

L(∆, s) =
∞∑
n=1

τ(n)n−s =
∏
p

(
1− τ(p)p−s + p11−2s

)−1
,

where the product ranges over all primes p.

An astute reader can perhaps point out that these two conditions are uncannily similar
to the relationships of Hecke operators; indeed, generalising this conjecture was one of the
motivations for Hecke’s work. This generalisation, also named after Petersson, can be stated
as follows:

Conjecture: Let f =
∑∞

n=1 an(f)q
n ∈ Sk (Γ1(N)) be a normalised Hecke eigenform. Then

|an(f)| ≤ 2p
k−1
2 .

Yet again, one may consider this conjecture to be a statement about the L-functions
L(f, s), and one mimicks the manipulations used to produce an Euler product for L(∆, s).
Mordell proved the Euler factorisation early in the twentieth century, but the bound on
Fourier coefficients remained unsolved until Deligne proved the Weil conjectures. The
Ramanujan-Petersson conjecture (for weights k ≥ 3) followed as a corollary; the weights
k = 1, 2 cases were handled separated, but they have been solved.

However, the theory of L-functions has since expanded far beyond the scope of modular
forms; with it, the Ramanujan-Petersson conjecture has generalised beyond its original state-
ment. Some generalisations have been demonstrated to be false, others have been solved,
but many broad cases have remained completely conjectural and unsolved.

The goal of the following pages is thus to provide a description of the larger context in
which modular forms fit. We aim to provide an expositional level of detail while hopefully

1



offering a broad and somewhat general perspective on the Ramanujan-Petersson conjecture.
This conjecture is of somewhat surprising relevance and interest to modern mathematics,
and we hope to illuminate its importance and development.

Maass Forms and Number Fields

Hecke Characters, Hecke L-functions, and Artin L-functions

Let K be a number field, and let OK its ring of integers. Let m be an integral ideal of K.
Let Jm be the ideals of K relatively prime to m.

Definition: A Hecke character (or Grössencharaktere) modulo m is a homomorphism χ :
Jm → S1 ⊂ C of the form χ = χ1χ∞, where χ1 : (O/m)× → S1 and χ∞ : R× → S1 are both
characters.

If χ′ is another Hecke character mod m′ for some m′ | m, so that χ′ = χ on Jm, χ is said
to be a restriction of χ′. The conductor of χ is the smallest divisor q | m such that χ is the
restriction of another Hecke character mod q.

We remark here that Hecke characters are often introduced as characters of the idèle
class group, or continuous homomorphisms χ : K×\A×

K → S1. This is a much more concise
definition that relies on more modern terminology than was available to Hecke.

Given a Hecke character χ, one can extend it to the integral ideals of K by setting
χ(a) = 0 when a and m are not coprime. This allows us to define the Hecke L-function

L(χ, s) =
∑
a

χ(a) (Na)−s =
∏
p

(
1− χ(p) (Np)−s)−1

,

where N is the absolute norm, the sum ranges over integral ideals a, and the Euler product
ranges over prime ideals p.

One may continue to define the completed Hecke L-series

Λ (χ, s) = (|dK |Nm)
s
2 L∞(χ, s)L(χ, s),

where dK is the discriminant of K over Q and L∞ is another L function. We refer the reader
to [1] for a more complete discussion and development of the theory of Hecke L-functions.

There are several things to note about Hecke L-functions and Hecke characters. First,
when χ is a Hecke character and has finite order, it is actually exactly a Dirichlet character;
hence Hecke L-functions are a broad generalisation of Dirichlet L-functions that incorporate
the arithmetic of a number field. Second, the completed Hecke L-function admits a mero-
morphic continuation to C (it can be shown to converge absolutely for Re s ≫ 0), and it
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satisfies the functional equation

Λ(χ, s) = W (χ)Λ(χ, 1− s)

for some W (χ) ∈ S1 depending only on χ. One may observe that L(χ, s) contains the data of
the non-archimedean places of K; the completed Λ has an additional factor of L∞ that can
be thought to include the archimedean places. The meromorphic continuation thus allows
for an analytic approach to understanding the arithemetic of K.

Artin later noticed that Hecke characters χ lay in a correspondence with two-dimensional
Galois representations ρχ : GK → GL2(C), where GK is the absolute Galois group of K.
This motivated a generalisation of Hecke’s L-functions called Artin L-functions.

Let L/K a finite Galois extension with Galois group G, and let ρ : G → GLn(C) be a
representation. Artin defined an incomplete L-function by considering

L(ρ, s) =
∏
p

det
(
In − ρ (Frobp) (Np)−s)−1

,

where the product is taken over unramified primes p and Frobp is any Frobenius element
over p (in fact, it is independent of this choice).

Artin then “completed” the L-function to Λ(ρ, s) by extending the above product to in-
clude the ramified primes, then adding some factors involving the gamma function Γ for
the archemidean primes. This again produces a functional equation relating Λ(ρ, s) =
W (ρ)Λ (ρ, 1− s), where again W (ρ) ∈ S1 depends only on ρ. For a deeper discussion of
Artin L-functions with a historical perspective, see [2].

While these Artin L-functions encode a wealth of arithmetic information, it is difficult to
obtain much information about their analytic properties. Using the convergence of Λ(ρ, s) for
Re s > 1 together with the functional equation, Artin was able to establish a meromorphic
continuation to C; however, recognising when this is an analytic continuation for nontrivial
ρ is still an open question.

Maass Forms and Conjectural “Modularity” of Galois Representa-
tions

Perhaps the above discussion hints at a motivation to connect these highly arithmetic objects,
Artin L-functions, to an object whose analytic properties we can better understand. Such a
correspondence is highly conjectural and remains open.

As a related example, consider the recently proven modularity theorem, which says that
L-function constructed from elliptic curves over Q are realised as L(f, s) for some modular
form f . Given a Galois representation ρ as above, does there exist a modular form (or related
object) f whose L-function coincides with L(ρ, s)?
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Hecke considered the case when K was an imaginary quadratic field, for which he con-
structed a holomorphic Maass form (to be defined later) of weight k (depending on χ∞) and
level |dK | ·Nq, where again q is the conductor of χ. This form is given by

fχ =
∑
a

χ(a) (Na)
k−1
2 qNa.

Maass adapted Hecke’s construction to real quadratic number fields, but found that this
generalisation lost its holomorphicity. This motivated him to introduce the space of Maass
forms, which serve as a class of functions that relax the conditions on modular forms and,
to some extent, aim to answer this version of modularity.

Maass forms are defined as functions on H that transform well under the action of
a congruence subgroup Γ, that are L2-integrable with respect to the hyperbolic measure
y−2dxdy on the quotient Γ\H, that satisfy a moderate growth condition near the cusps
(analogous to meromorphicity), and are eigenfunctions of the weight k non-Euclidean Lapla-
cian ∆k = −y2

(
∂2
x + ∂2

y

)
+ iky∂x. For a more precise definition of Maass forms, see [3]. We

also refer the reader to section 4 of [4], which has a concise but detailed exposition of Maass
forms.

If f is a modular form of weight k, then y
k
2 f is a Maass form of weight k. Thus Maass

forms are a generalisation of the space of modular forms after this normalisation; in addition
to the weight k Laplacian, one may define a generalisation of Hecke operators Tn to the
space of Maass forms, and in fact, these Tn’s commute with ∆k. The classical notions of
cusp forms, newforms, and oldforms carry over from the setting of modular forms. A Maass
form that is an eigenfunction of each Tn is called a Hecke-Maass form.

It is under this more general setting that Maass was able to construct analytic objects
whose L-functions coincided with the Hecke L-function of a real quadratic field. Moreover,
for certain irreducible 2-dimensional complex representations of GQ (the absolute Galois
group of Q), Langlands and Tunnell demonstrated the existence of Maass forms that shared
an L-function with the representation. See [3] for a full description of these cases.

Conjectures of Ramanujan-Petersson and Selberg

Upon considering Maass forms as a broadening of modular forms, it is natural to ask about
an analogue of the Ramanujan-Petersson conjecture. There are several different statements
of the conjecture, each carrying a different perspective. On one hand,

Conjecture: Let f be a Hecke-Maass form of weight k, and let an(f) be its nth Fourier

coefficient. Then |an(f)| ≤ 2p
k−1
2 .

On the other hand, it is worthwile to consider Tn to be a linear operator acting on the
Hilbert space L2 (Y (N)) (or Y1(N), or Y0(N)), which can bee seen as the space of Γ-invariant
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functions on H whose L2 norm is finite. These Tn’s turn out to be self-adjoint, and the
Ramanujan-Petersson conjecture considers the restriction of Tn to the subspace L2

0 (Y (N))
of Maass cusp forms of weight 0. There, it states that the operator norm of this restriction
is at most 2, or more precisely that ∥Tp∥L2(Y (N)) ≤ 2 for all primes p.

This establishes a link to the tools of functional analysis and spectral theory, but the
picture is yet incomplete. The Hecke operators also commute with ∆k, which for k = 0 is
the usual non-Euclidean Laplacian operator ∆, which also acts on L2 (Y (N)). Selberg was
interested in the spectral properties of ∆, which has an interesting spectrum on this larger
space of functions. On one hand, it has a continuous spectrum spanned by non-holomorphic
Eisenstein series, and the eigenvalues taken all fall in the range

[
1
4
,∞

)
. More interestingly,

however, they also have a discrete spectrum consisting of Maass forms, which are more
mysterious.

Traditionally, the eigenvalues from the discrete spectrum are expressed as 1−s2

4
for a

complex parameter s. Since ∆ is a real positive-definite symmetric operator, it follows that
its eigenvalues too must be real and positive. Selberg conjectured that the parameters s were
all purely imaginary, hence forcing the discrete spectrum to have eigenvalues at least 1

4
. This

is Selberg’s eigenvalue conjecture. For a good expository article on Selberg’s conjecture, see
[5].

The Tp’s are suggestive of non-archimedean places of Q, and ∆ could perhaps fit in as
the archimedean place of Q. Is there a formulation of this conjecture that unifies the two?

The answer is yes, and mathematicians such as Satake and Langlands realised this when
they rephrased Maass forms in the context of automorphic representations. The limited intel-
lectual capacity of the author means that (like most things in this exposition) our discussion
will be minimal and simplified, but we will aim to provide some background nonetheless for
completeness.

We will assume familiarity with adéles, and we refer the reader to [6] for a more complete
development of the necessary background and ensuing theory. Let K be a number field, A its
ring of adéles, and Afin the finite adéles. Under the right topology, GL(n,A) is a unimodular
locally compact topological group, so it admits a (left and right) Haar measure µ. GL(n,K)
is then a discrete subgroup of GL(n,A). Let Z(n,A) denote the scalar n× n matrices with
entries in A. The quotient Z(n,A)GL(n,K)\GL(n,A) has finite volume with respect to its
Haar measure.

Let ω : A×/K× → S1 be a character (an adélisation of the earlier Hecke character),
and define the space L2 (GL(n,K) \GL(n,A), ω) to be the space of all square-integrable
functions f on the quotient such that f(zg) = ω(z)f(g) for all z ∈ Z(n,A). Define
A (GL(n,K)\GL(n,A)) to be the space of automorphic forms, consisting of functions f ∈
L2 (GL(n,K) \GL(n,A)) satisfying some growth, smoothness, and finiteness conditions.
Automorphic representations of GL(n,A) are (roughly speaking) those induced by repre-
sentations of subquotients of A (GL(n,K)\GL(n,A)).
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Every irreducible representation π of GL(n,A) satisfying some admissability conditions
can be identified with

⊗
v πv, where each πv is a representation of GL (n,Kv) for places v

of K, and all but finitely many of the πv’s are unramified. Automorphic representations
described prior naturally correspond to these tensored representations.

The Ramanujan-Petersson conjectures and the Selberg conjectures are magically unified
under this new guise. From Maass forms, one may construct an irreducible (admissable)
representation of GL(n,A), and the conjectures of the behaviour Tp translate into the tem-
peredness of the components πv for finite places v. At the same time, Selberg’s conjecture
on the eigenvalues of ∆ translate to temperedness of the infinite components of π.

This is the generalised Ramanujan-Petersson conjecture. The above discussion of auto-
morphic representations can be generalised to certain groups over any field F , though the
natural analogues of the Ramanujan-Petersson conjecture have been demonstrated to be
false. However, the most important cases of the conjecture remain open to this day, even
within the classical theory of Maass forms.

Further Reading

We hope this vague, sketchy, and mathematically disconnected survey of the Ramanujan-
Petersson conjecture was, to some extent, readable. Many concepts mentioned in the above
stretch far beyond the author’s current intellectual capacity.

To conclude the survey, we should mention several sources of further reading for the
interested reading:

• Daniel Bump [6] has a textbook Automorphic Forms and Representations, which seems
to be cementing itself as a standard reference for the topic.

• James Arthur [10] has a fairly detailed description of modern progress on the automor-
phic representation theory of certain matrix groups.

• Luis Lomeĺı [9] wrote an excellent survey on the interplay between the generalised
Ramanujan-Petersson conjectures and the Langlands program.

• Winnie Li [8] has a detailed expository article on the implications of the Ramanujan-
Petersson conjecture, with a focus on its applications to surprising areas such as graph
theory.

This exposition was perhaps not at the level of detail and mathematical maturity that I
wanted it to be at, but reading these sources in particular has shown me many completely
new types of mathematics that I hadn’t seen before.

6



References

[1] Jürgen Neukirch. Algebraic Number Theory. Springer-Verlag, 1992.

[2] James W. Cogdell. “On Artin L-Functions”. In: 2007.

[3] Valentin Blomer and Farrell Brumley. “The Role of the Ramanujan Conjecture in
Analytic Number Theory”. In: Bulletin of the American Mathematical Society 50.2
(2013), pp. 267–320.

[4] W. Duke, J. B. Friedlander, and H. Iwaniec. “The subconvexity problem for Artin
L-functions”. In: Inventiones mathimaticae 149 (3 2002), pp. 489–577.

[5] Peter Sarnak. “Selberg’s Eigenvalue Conjecture”. In: Notices of the American Mathe-
matical Society 42.11 (1995), pp. 1272–1279.

[6] Daniel Bump. Automorphic Forms and Representations. Combridge University Press,
1998.

[7] Henryk Iwaniec and Emmanuel Kowalski. Analytic Number Theory. American Math-
ematical Society, 2004.

[8] Wen-Ching Winnie Li. “The Ramanujan conjecture and its applications”. In: Philo-
sophical Transactions of the Royal Society A 378 (2163 2020).
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