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Rigid spaces were first introduced by Tate in the study of the multiplicative uniformi-
sation of elliptic curves over a nonarchimedean field. In the archimedean setting, it is well
known that an elliptic curve E/C is isomorphic to C×/ ⟨q⟩, where q = e2πiz. Attempts to gen-
eralise this construction to nonarchimedean settings quickly run into significant topological
barriers, and this motivated Tate to create the theory of rigid analytic spaces.

Since then, the development and applications of this theory have only expanded. The
applications of rigid analytic geometry are too broad and numerous to list in good faith, but
one that must be mentioned is its use in the theory of overconvergent modular forms.

Serre’s p-adic modular forms suffered from a continuous spectrum of the Up operator;
deeper study necessitates the restriction to some subspace of these modular forms. Katz [4]
realised that Serre’s p-adic modular forms were those that resembled analytic functions that
converge on the space of elliptic curves with good reduction modulo p. This is a subset of
the modular curve X over Cp.

Katz’s theory of overconvergent modular forms restricts its view to the modular forms
that converge on a set slightly larger than the elliptic curves with good reduction; Calegari
[2] and other sources call these the “not too supersingular” elliptic curves. These subsets of
X are not compatible with the usual Zariski topology; moreover, due to the totally discon-
nected nonarchimedean topology, local-to-global correspondences involving power series are
untenable. For these reasons, one must “rigidify” X and work on the corresponding rigid
analytic space in order to make precise these geometric intuitions.

Our goal is thus to give a gentle introduction to Tate’s rigid analytic spaces and ulti-
mately state the analogue of GAGA from complex analytic geometry; this constitutes the
“classical” theory. For the interested reader, [1] (our primary reference) gives a more or less
complete account of this theory. [5] describes Tate’s original application and motivations
of nonarchimedean multiplicative uniformisations, and [3] is a thorough exposition with de-
tailed examples of rigid analytic spaces in general. Sources such as [6] and [2] do a great
job illustrating the importance of rigid analytic geometry to overconvergent modular forms,
though their emphasis is placed primarily on the latter topic.

It should be mentioned that Tate’s construction was highly explicit. Modern applications
favour Raynaud’s perspective of rigid analytic geometry, which develops these spaces as
generic fibres of certain formal schemes. For brevity, we shall not focus on this alternative
perspective; we refer the interested reader to [1].

Affinoid K-algebras and K-spaces

Analogous to how schemes are topological spaces that locally resemble affine varieties, rigid
spaces are those that locally resemble affinoids, which we shall define shortly. One should
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vaguely envision affinoids as analytic analogues to affine varieties — rather than working with
rings of polynomials, we shall be working with rings of converging power series. This allows
us to make sense of “analytic functions” over nonarchimedean fields while simultaneously
avoiding intrinsically local concepts of derivatives and analyticity.

In what follows, K will be a field with a complete nonarchimedean absolute value.

Definition. The Tate algebra over K, denoted K ⟨X1, . . . , Xn⟩ or Tn for n ≥ 1, is the set
of all formal power series

∑
α∈Nn cαX

α ∈ K JX1, . . . , XnK such that lim|α|→∞ |cα| = 0. An
affinoid K-algebra is any quotient of Tn.

Tn can be naturally identified with the power series on Kn that converge on the closed
unit disc. Many constructs from elementary algebraic geometry indeed carry over, such
as the Zariski topology on the spectrum of Tn, a correspondence between ideals of Tn and
vanishing sets in the closed unit disc, and identifications between affinoid K-algebras and
function rings on Zariski-closed subsets of the unit disc. [1] develops this theory in great
detail in chapter 3.

Importantly, Tn is complete with respect to the Gauss norm, given by∣∣∣∣∣∑
α∈Nn

cαX
α

∣∣∣∣∣ := sup
α∈Nn

|cα| .

Its quotients are endowed with the usual quotient norm, and thus all affinoid K-algebras are
in fact Banach K-algebras.

An affinoid K-space is just a set of the form SpmA. We shall produce a suitable topology
and a sheaf of K-algebras later. A morphism of affinoid K-spaces SpmA → SpmB can be
induced by a K-algebra homomorphism φ : B → A. This is because if m is a maximal ideal
of A, then there are natural inclusions K ↪→ B/φ−1(m) ↪→ A/m. A/m is a finite extension
of K, and it can be shown that B/φ−1(m) must be a field. Thus, we define a morphism of
affinoid K-spaces to just be the data of the underlying K-algebra homomorphisms.

The Zariski topology is a rather coarse topology to work with, and it is somewhat un-
natural in the sense that it bears little resemblance to the norm topology on Kn. This is in
spite of the natural identification of SpmTn with the closed ball in Kn! There is a different
topology that one can place on SpmTn that “arises from” the topology on Kn.

Specifically, let X = SpmA. For a maximal ideal m ∈ X and f ∈ A, define f(m) to be
the reduction of f modulo m. Using the quotient norm on A/m (noting that m will always
be closed in the norm topology), we define the sets

X (f, ϵ) = {m ∈ X : |f (m)| ≤ ϵ} .

Definition. The canonical topology on X = SpmA is the topology generated by the sets
X (f, ϵ) for f ∈ A and ϵ > 0. A rational domain is a set of the form

X

(
f1
f0
, . . . ,

fr
f0

)
:= {m ∈ X : |fi(m)| ≤ |f0(m)| ∀i = 1, . . . , r} ,
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where f0, . . . , fr ∈ A have no common zeroes.

It can be verified that rational domains are open in the canonical topology. Upon making
the natural identifications of SpmTn with the closed unit ball in Kn, the canonical topology
resembles a weak topology induced by the norm. Indeed, this canonical topology is far finer
than the Zariski topology and is totally disconnected (much like the norm topology on Kn).

Affinoid Subdomains and Grothendieck Topologies

Let us now return to the issue of topologies. Where schemes are constructed by gluing
together affine varieties (which are themselves locally ringed spaces), we would like to realise
rigid spaces as glued-together affinoid spaces with the additional structure of a ringed space.

We’ll remark here that the desired to make affinoid spaces into ringed spaces requires
that we work with the maximal spectrum instead of SpecA. Localisations at non-maximal
prime ideals do not interact well with the norm, and it is desirable for the localisations to
remain complete. As such, a “completed localisation” can be defined instead, and although
this construction works well with maximal ideals, it no longer permits localisations at non-
maximal primes.

On one hand, the canonical topology is far too fine for this to be possible: it is totally
disconnected, so sheaves on SpmA will typically degenerate. Specifically, if X = SpmA, we
would like to give X the sheaf of rings OX , defined just like the classical algebro-geometric
construction for affine schemes. However, this is merely a presheaf due to these topological
barriers.

On the other hand, the Zariski topology on affinoid spaces is too coarse. When con-
structing schemes, distinguished open sets of the form {f(x) ̸= 0} play a central role, for
every open set decomposes into a finite union of distinguished open sets. The simplicity of
these open sets together with this finite-ness condition are what allow one to formalise the
gluing process. Unfortunately, affinoid spaces do not admit Zariski-open anologues to these
distinguished open sets.

Hence, our aim is to construct a topology finer than the Zariski topology to allow for
these well-behaved open sets but simultaneously coarser than the canonical topology to allow
for interesting sheaf structures to arise.

Definition. Let X = SpmA be an affinoid K-space. U ⊆ X is an affinoid subdomain if
there exists some affinoid K-space X ′ with a morphism ι : X ′ → X with ι (X ′) ⊆ U satisfying
the following universal property: if f : Y → X is any morphism of affinoid K-spaces such
that f(Y ) ⊆ U , then f factors into Y → X ′ ι−→ X.

The motivation for this definition is twofold: first, affinoid subdomains are “compatible”
with the presheaf OX . Second, affinoid subdomains admit finite decompositions into “simple”
open subsets that are anologous to the distinguished open subsets of an affine scheme. These
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two facts, together with a technical refinement of the toploogy, will allow for a meaningful
notion of a rigid space. To formalise these statements, we shall state two theorems:

Theorem (Tate’s Acyclicity Theorem). Let X be an affinoid K-space, and let {Ui} be a
finite cover of X by affinoid subdomains. Let U ⊆ X be open in the canonical topology, and
let Vi = U ∩ Ui. If fi ∈ OX (Vi) such that fi|Vi∩Vj

= fj|Vi∩Vj
for all i, j, then there exists a

unique f ∈ OX(U) such that f |Vi
= fi for all i.

Theorem (Gerritzen-Grauert). Every affinoid subdomain in an affinoid K-space is a finite
union of rational domains.

There is a more general statement of Tate’s acyclicity theorem, but this version is suffi-
cient for our purposes. The key takeaway is that uniqueness and gluability are only guaran-
teed to hold for finite coverings by affinoid subdomains. Hence, one cannot expect to make
OX into a sheaf on any topology containing all affinoid subdomains without a substantially
stronger result. Rather than undertaking this effort, one broadens the notion of a topology
to restrict the types of open covers permitted within the topology. This is the Grothendieck
topology:

Definition. A Grothendieck topology T is a category CatT and a set CovT. Objects of CatT
are called admissible opens. Elements of CovT, called coverings, are families of morphisms
in CatT {Ui → U}i∈I satisfying:

• If U → V is an isomorphism, {U → V } ∈ CovT.

• If {Ui → U}i∈I and and {Vij → Ui}j∈Ji are coverings, then the composite

{Vij → Ui → U}i∈I,j∈Ji
is also a covering.

• If {Ui → U}i∈I is a covering and V → U , then the fibred products Ui ×U V all exist
and {Ui ×U V → V }i∈I is a covering.

A set X with a Grothendieck topology T where CatT is a category of subsets of X is
called a G-topological space. In this case, we call elements of CovT admissible coverings to
distinguish from arbitrary open covers. In particular, any topological space is a G-topological
space with CatT as the category of open subsets and CovT defined naturally. A function
f : X → Y between G-topological spaces is continuous if f−1 takes admissible opens to
admissible opens and admissible covers to admissible covers.

Definition. Let (X,T) be a G-topological space. A presheaf on X is a contravariant functor
F on CatT (to a category such as Groups, Rings, etc.). F is a sheaf if for any covering
{Ui → U}i∈I and fi ∈ F (Ui) satisfying fi|Ui×UUj

= fj|Ui×UUj
, there is a unique f ∈ F (U)

satisfying f |Ui
= fi.

Put another way, sheaves on G-topological spaces satisfy the gluability axiom on admis-
sible covers. Näıvely, if X is an affinoid K-space, one may make it a G-topological space by
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declaring CatT the category of affinoid subdomains with inclusions as morphisms and CovT
the set of all finite coverings of affinoid subdomains by affinoid subdomains. Then indeed
OX is a sheaf on X by Tate acyclicity, but the topology is still too coarse.

Specifically, if f : X → Y is a map of affinoid K-spaces, then f may not be continuous
with respect to the above Grothendieck topologies. The admissible opens and admissible
coverings must be relaxed slightly as follows:

Definition. Let X be an affinoid K-space. Declare U ⊆ X to be an admissible open if it
admits a possibly infinite covering by affinoid subdomains U =

⋃
i∈I Ui such that whenever

f : X ′ → X is a map of affinoid K-spaces with f (X ′) ⊆ U , there is a finite covering of
affinoid subdomains X ′ =

⋃
Vj such that for all i, f−1 (Vi) ⊆ Vj for some j.

A covering U =
⋃

i∈I Ui with each U,Ui admissible is an admissible covering if for each
f : X ′ → X a map of affinoid K-spaces with f (X ′) ⊆ U , the same conclusion as above
holds. The resulting Grothendieck topology T is called the strong Grothendieck topology on
X.

OX is not a priori a sheaf on the strong Grothendieck topology, but again one may
mimic algebraic geometry and construct a sheafification of any presheaf. Then Osh

X (the
sheafification) is a bona fide sheaf on T, and moreover, if U is an affinoid subdomain of X,
OX (U) = Osh

X (U). We shall abuse notation and identify OX with Osh
X . This is called the

sheaf of rigid analytic functions on X. Other sheaf-theoretic notions (e.g. stalks, locally
ringed spaces, morphisms of locally ringed spaces, etc.) all carry over in the natural ways to
this setting.

This completes our definition of the rigid-analytic analogue to affine varieties: where the
latter is a locally ringed space (Y,OY ) that is isomorphic to SpecR with its sheaf of functions,
an affinoid K-space is a G-topological space Y with a sheaf of K-algebras OY whose stalks
are all local rings that is isomorphic to SpmA with its sheaf of rigid analytic functions.

Rigid Spaces and Ridigification

The definition of a rigid space over K is now quite natural: it is simply a locally ringed
G-topological K-space (X,OX) (i.e., OX is a sheaf of K-algebras whose stalks are all local
rings) with an admissible covering {Xi → X}i∈I such that

(
Xi, OX |Xi

)
is isomorphic to an

affinoid K-space as locally ringed G-topological K-spaces. The Grothendieck topology on
X is subject to some mild technical assumptions.

In words, a rigid space is just something that is locally an affinoid K-space. These are
generalisations of complex analytic spaces, as the “functions” in OX are those that locally
resemble converging power series. We should remark that this construction has addressed
all of our topological concerns with nonarchimedean geometry, and the odd topological con-
structions and definitions were all made so that there would be a sensible local-to-global
connection between a function and its power series.
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To conclude, we shall briefly describe the process of rigidification. We start with a scheme
Z locally of finite type over K; we would like to associate to it a rigid analytic space Zrig.
Specifically, it is a rigid space with a map of locally ringed G-topological K-spaces Zrig → Z
such that any map of locally ringed G-topological K-spaces f : Y → Z factors uniquely
through Zrig.

First, one rigidifies affine n-space An
K . Intuitively, the ridigification is just Kn with the

sheaf of globally converging power series in n variables. To describe this as a rigid space,
first fix some c ∈ Kn with |c| > 1 and define Bi to be the ball of radius |c|i. Define

T
(i)
n = K

〈
c−1
1 X1, . . . , c

−1
n Xn

〉
, i.e. the K-algebra of power series that converge on Bi. Then,

since Kn =
⋃∞

i=0Bi, one would like to write “An,rig
K =

⋃∞
i=0 SpmT

(i)
n ”. One can then verify

that indeed the right-hand-side describes a rigid space, for there are the natural inclusions

SpmT (0)
n ↪→ SpmT (1)

n ↪→ · · ·

This argument extends naturally to when Z is an affine scheme. If Z = SpecK [X1, . . . , Xn] /I

for some ideal I, we let I(i) ⊆ T
(i)
n be the ideal generated by elements of I. Note there is

an obvious and natural inclusion of K [X1, . . . , Xn] ↪→ T
(i)
n for all i. Then, one repeats

the above process and declares Zrig =
⋃∞

i=0 SpmT
(i)
n /I(i). An analogous chain of inclusions

justifies why this union is a rigid space.

By verifying the universal property of rigidifications mentioned earlier, one sees that this
construction is independent of the choice of c. Moreover, one can rigidify any K-scheme
along the affine open subsets, and the universal property ensures that the rigidifications
agree along the intersections.

Concluding Remarks

As a final remark, we should briefly expound upon one of the applications to overconvergent
modular forms. In [2], Xr (the space of r-overconvergent modular forms) is defined as
a certain subset of Xrig, the rigidification of the modular curve X over Qp. Xord is the
ordinary locus of X, whose Qp-points correspond to elliptic curves with good reduction
modulo p. There is a natural identification of Qp-points of X and Xrig, so one can identify
Xord (Qp) with the corresponding points in Xrig.

From there, one can use the Hasse invariant to demonstrate that Xord is an affinoid open
subset of Xrig. Its complement is a collection of closed discs containing supersingular elliptic
curves. Xr is then defined as an enlargement of Xord by removing smaller and smaller discs
from Xrig. Of course, the rigidification is necessary here, as this construction is incompatible
with the Zariski topology on X.

This concludes our discussion of rigid analytic spaces from the classical perspective of
Tate. This is by no means a complete account of the theory; again, we refer the reader to
[1] for a thorough development of what was outlined above. Nevertheless, we hope this was
able to provide a gentle introduction to the constructions and intuition behind rigid analytic
geometry.
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