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Abstract. Among the first results one learns in symplectic geometry is that sym-
plectic transformations preserve volume. It is easily possible to transform a ball of
some radius into a cylinder of another radius in a volume-preserving fashion. Then
are all volume-preserving transformations symplectic? Gromov’s non-squeezing the-
orem [4] gave one of the first cases where the answer was no: the radius of the ball
is at most the radius of the cylinder for a symplectic embedding. His original proof
introduces pseudoholomorphic curves on almost complex manifolds and this paper
serves as an introduction to Gromov’s 1985 proof and the notions he introduced
therein.
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1. Introduction

Symplectic geometry is strongly motivated by certain systems and constructs from
physics, particularly in classical mechanics and certain branches of optics. Of note are
Hamilton’s equations, which are closely connected to symplectic forms on symplectic
manifolds. However, with its long history came several lasting open-ended questions
about symplectic manifolds, for little about them were understood.

One of these questions is related to the properties of maps between symplectic
manifolds, or symplectomorphisms. These were known to preserve area, but it wasn’t
known whether or not they preserved other invariants as well. In fact, if all sym-
plectomorphisms preserve area, can we say anything about the converse? In 1985,
Gromov’s non-squeezing theorem was one of the first and most important cases where
the converse is not true. It states:

Theorem 1.1 (Gromov, 1985). If there exists a symplectic embedding of a 2n-
dimensional ball of radius r into a 2n-dimensional cylinder of radius R, then r ≤ R.

In essence, it says that symplectomorphisms cannot elongate or stretch spheres into
eggs or tubes, and it indicates the existence of shape-related symplectic invariants.
This theorem was foundational to modern symplectic geometry and sparked a plethora
of new research in its wake. In fact, one idea that was motivated by Gromov’s non-
squeezing theorem was the symplectic capacity. A notable example of the symplectic
capacity is the Hofer-Zehnder capacity, whose existence and properties are sometimes
used to give alternate proofs of Gromov’s non-squeezing theorem.

Whereas the Hofer-Zehnder capacity uses tools from the study of Hamiltonian
functions, Gromov’s original proof utilised an important insight about almost-complex
structures on symplectic manifolds. We will develop the theory of almost-complex
structures and discuss how it is connected to complex analysis. It was by studying
pseudoholomorphic (or sometimes J-holomorphic) curves, which are analogous to
holomorphic functions on Riemann surfaces, that Gromov was able to finally give a
proof of the non-squeezing theorem. We shall not be giving a full proof here due
to its liberal use of non-analytic concepts such as homology theory, CW-complexes,
and algebraic topology, but we will attempt to flesh out and develop the role of
pseudoholomorphic curves and outline how they fit in with the rest of the proof while
adding commentary and heuristic outlines as much as possible.

Finally, we will assume some background in differential geometry, specifically re-
garding Riemannian manifolds, tangent and cotangent spaces, and differential forms.
Regardless, we develop some basics in symplectic geometry and manifold theory to
establish terminology and familiar concepts.
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2. Background

The smoothest introduction to symplectic geometry is a concept called linear sym-
plectic geometry where we concern ourselves with well-behaved (read: linear) maps
on finite-dimensional vector spaces. This section is primarily from [8].

2.1. Linear Symplectic and Complex Structure.

Definition 2.1. Suppose V is a finite-dimensional real vector space and ω : V ×V →
R is a bilinear map. We say ω is:

• anti-symmetric if for all u, v ∈ V , ω(u, v) = −ω(v, u).
• non-degenerate if the associated map ω̃ : V → V ∗ defined by ω̃(u)(v) = ω(u, v)
is bijective, where V ∗ is the dual of V .

Observe that we can also regard ω has a linear 2-form on V . Also, the above non-
degeneracy condition is equivalent to the condition that if ω(u, v) = 0 for all v ∈ V ,
then u = 0.

Definition 2.2. A symplectic vector space is a pair (V, ω) where V is a real vector
space and ω a non-degenerate, antisymmetric bilinear map. We say ω is a linear
symplectic structure or form on V .

A standard example of this is to take V = R2n and define

ωstd((x, u), (y, v)) = ⟨x, v⟩ − ⟨u, y⟩

where ⟨·, ·⟩ is the standard real inner product. Then (V, ω0) is easily verified to by
a symplectic vector space. However, these maps are not the only structures we can
place on a space.

Definition 2.3 (Complex Structure). A complex structure on a vector space V is an
automorphism J : V → V such that J2 = −Id. We call the pair (V, J) a complex
vector space.

Roughly speaking, this definition of J allows us to “multiply by
√
−1” on V . In

fact, a basic example of this is Cn with the standard complex structure J0(z) := iz. It
is easy to check this defines a complex structure and moreover, if we identify Cn with
R2n in the usual way, we see that this is equivalently J0(xi) = y0 and J0(yi) = −xi
where z = (x, y).

With our two structures we can place on a vector space, let us now see how these
can interact with each other.

Definition 2.4. Let (V, ω) be a symplectic vector space and J a complex structure on
V . We say:

• J is tamed by ω if the quadratic form ω(v, Jv) is positive definite.
• J is compatible with ω if it is tamed by ω and J satsifies ω(Jv, Jw) = ω(v, w).
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Let J (V, ω) denote the space of ω-compatible complex structures on V . With these
two guidelines, the immediate question is if J (V, ω) is empty or not. In fact, we have
that for any symplectic vector space, it will admit a compatible complex structure.

Theorem 2.5. Every symplectic vector space (V, ω) admits a compatible complex
structure. Moreover for all inner products g(·, ·) on V , one can canonically construct
such a J .

Proof. Consider an inner product g on V . Since g, ω are non-degenerate, there exists
an endomorphism A of V such that ω(u, v) = g(Au, v). In other words, A is the
transpose matrix of ω in an orthogonal basis. The map A is skew adjoint with
respect to G since

g(A∗u, v) = g(u,Av) = g(Av, u) = ω(v, u) = −ω(u, v) = g(−Au, v)

so A∗ = −A. Note (AA∗)∗ = A∗A = (−A)(−A∗) = AA∗ so we have symmetric and
positive-definiteness from

g(AA∗u, u) = g(A∗u,A∗u) > 0

for u ̸= 0. Symmetry gives us diagonalizability and positive-definite gives that all the
eigenvalues λi are positive so we can write

AA∗ = Bdiag(λ1, . . . , λn)B
−1

so we can define
√
AA∗ = Bdiag(

√
λ1, . . . ,

√
λn)B

−1. This is still symmetric and
positive-definite. Let

J := (
√
AA∗)−1A.

Since A commutes with
√
AA∗ =

√
A(−A) =

√
−A2, we get that J and A commute.

Since A∗ = −A, J∗ = −J so

−J2 = J∗J =
(
A∗ (AA∗)−1) ((AA∗)−1A

)
= A∗(AA∗)−1A = Id.

Thus, J defines a complex structure. It remains to show compatibility, but note

ω(Ju, Jv) = g(AJu, Jv) = g(JAu, Jv) = g(J∗JAu, v) = g(Au, v) = ω(u, v)

and

ω(u, Ju) = g(Au, Ju) = g(J∗Au, u) = g(
√
AA∗u, u) > 0

for u ̸= 0 by positive-definiteness of
√
AA∗. □

In general, the positive-definite inner product ω(u, Jv) ̸= g(u, v), but if J is given
and g(u, v) = ω(u, Jv), then we have equality. We can also consider families of
complex structures and symplectic vector spaces. If (Vt, ωt) is a smooth family of
symplectic vector spaces, then there exists a smooth family of inner products gt to
get a smooth family of complex structures Jt.

Theorem 2.6. The space J (V, ω) is contractible.
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Proof. Fix an ω-compatible complex structure J on V . Define the contraction map
f : [0, 1] × J (V, ω) → J (V, ω) as follows. For all J ′ ∈ J (V, ω), there exists a
naturally-defined inner product g′. Let gt = tg + (1 − t)g′ so gt is an inner product
on V , which gives a canonically-defined continuous family of complex structures Jt.
Thus J0 = J ′ and J1 = J , so f is continuous with f(0, J ′) = J ′ and f(1, J ′) = J . □

In linear theory, we observe that everything is well-behaved, but fortunately, many
of the concepts and theorems discussed generalize nicely to manifolds. For example,
as we will see, even if (M,ω) is a symplectic manifold, rather than a vector space, it
must still be even-dimensional.

2.2. Manifolds. Although we assume some familiarity with manifolds, for the sake
of notation, we re-introduce some concepts.

Definition 2.7 (Smooth Manifold). Let n ∈ N and M a set. A chart on M is a
pair (ϕ, U) where U ⊆ M and ϕ : U → ϕ(U) is bijection to some open subset ϕ(U)
of Rn. Two charts (ϕ1, U1) and (ϕ2, U2) are compatible if ϕ(U1 ∩U2) and ϕ2(U1 ∩U2)
are open and the transition map

ϕ21 = ϕ2 ◦ ϕ−1
1 : ϕ1(U1 ∩ U2) → ϕ2(U1 ∩ U2)

is a diffeomorphism. A smooth atlas on M is a collection A of charts on M any
two of which are compatible and such that the sets U , as (ϕ, U) range over A , cover
M . A maximal smooth atlas is an atlas containing every chart compatible with each
of its members. A smooth n-manifold is a pair consisting of a set M and a maximal
smooth atlas A on M .

Manifolds, although tedious to define rigorously, are ubiquitous in mathematics as
we trust the reader may have encountered.

Definition 2.8 (Diffeomorphisms). Let (M, {(ϕα, Uα)α∈A}) and (N, {(ψβ, Vβ)β∈B})
be smooth manifolds. A map f :M → N is smooth if f is continuous and the map

fβα = ψβ ◦ f ◦ ϕ−1
α : ϕα(Uα ∩ f−1(Vβ)) → ϕβ(Vβ)

is smooth for all α ∈ A, β ∈ B. We say f is a diffeomorphism if it is bijective and
both f, f−1 are smooth. The manifolds M,N are said to be diffeomorphic if there
exists such an f .

In symplectic geometry, one is often concerned with doing calculus on these man-
ifolds. Indeed, in just these first two definitions we already see familiar notions of
smoothness and continuity. But these apply to functions, so what if we want to apply
derivatives to get something like a space, a tangent space, if you will. To define tan-
gent spaces, there are two natural motivations. The first way is to work on points on
the manifold and to consider all the curves through a certain point. But some curves
will have the same velocity when running through the point, so we need to impose
some equivalencies. This gives rise to the first definition below. The second idea is to
work in local coordinate patches where we can apply the familiar toolkit of Euclidean
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spaces. Recall that for U ⊆ Rn, V ⊆ Rm open subsets, f : U → V , and x ∈ U , the
derivative of f at x is the linear map df(x) : Rn → Rm defined by

df(x) :=
d

dt
f(x+ th)

∣∣∣∣
t=0

= lim
t→0

f(x+ th)− f(x)

t

where h ∈ Rn.

Definition 2.9 (Tangent Space). Let M be a manifold with atlas A = {(ϕα, Uα) :
α ∈ A} and p ∈ M . Two smooth curves γ0, γ1 : [0, 1] → M with γ0(0) = γ1(0) = p
are called p-equivalent if for some α ∈ A with p ∈ Uα, we have

d

dt
ϕα(γ0(t))

∣∣∣∣
t=0

=
d

dt
ϕα(γ1(t))

∣∣∣∣
t=0

which we denote γ0 ∼p γ1. This defines an equivalence class so we can denote the class
of a smooth curve γ : [0, 1] → M with γ(0) = p to be [γ]p. Every equivalence class
is a tangent vector of M at p. The tangent space of M at p is the set of equivalence
classes

TpM := {[γ]p : γ ∈ C∞([0, 1],M)}

with γ(0) = p.

Definition 2.10 (Tangent Space, Alternative Definition). Let M be a manifold with
atlas A = {(ϕα, Uα) : α ∈ A} and p ∈ M . The A -tangent space of M at p is the
quotient space

TA
p M :=

⋃
α:p∈Uα

{α} × Rn

/
∼p

where (α, v) ∼p (β, w) if and only if d(ϕβ ◦ ϕ−1
α )(ϕα(p))v = w.

In Defintion 2.10, TA
p M is a vector space with dimension n but it is not clear

immediately that TpM is as defined in Definition 2.9. But there exsts a bijection
φ : TpM → TA

p M where [γ]p is mapped to the pair(
α,

d

dt
ϕα(γ(t))

∣∣∣∣
t=0

)
.

This induces a vector space structure on TpM . Thus, these definitions are in fact
interchangeable and we can drop the A superscript from Definition 2.10.

For each p, we can associate a tangent space TpM , but we can also consider the
manifold and all the tangent spaces to get the tangent bundle

TM :=
⋃
p∈M

TpM

which we will see becomes important in later sections.
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3. Symplectic Manifolds

Definition 3.1 (Symplectic Manifold). A symplectic manifold is a pair (M,ω), where
M is a smooth manifold and ω : TM × TM → R is a non-degenerate closed 2-form,
i.e. dω = 0. ω is called a symplectic form.

Riemannian manifolds are equipped with Riemannian metrics, which endow the
manifold with a notion of lengths and angles. Symplectic forms don’t have an intuitive
or natural geometric interpretation. One can think of them as an analogue to a notion
of 2-dimensional area, though this should be taken with a grain of salt.

In Riemannian geometry, diffeomorphisms of Riemannian manifolds are no longer
the only transformations of interest; rather, one studies isometries, which preserve
the local notions of length. Similarly, maps between symplectic manifolds need to
respect the symplectic forms of each manifold.

Definition 3.2. Let (M,ω) and (M ′, ω′) be two symplectic manifolds. A map φ :
M →M ′ is a symplectomorphism if it is a diffeomorphism and ω = φ∗ω′, where φ∗ is
the pullback 1 by φ. ι :M ↪→M ′ is a symplectic embedding if it’s a smooth embedding
and ω = ι∗ω′.

A more important facet of symplectic manifolds is that not all manifolds admit
a symplectic form. In contrast, one can always find a Riemannian metric on an
arbitrary manifoldM by embedding it in a high-enough-dimensional Euclidean space
and restricting the natural dot product to M ’s tangent spaces.

Proposition 3.3. Let (M,ω) be a symplectic manifold. Then,M is even-dimensional.

Proof. Fix p ∈ M , and consider ωp : TpM × TpM → R. Since ω is a non-degenerate
2-form, ωp must be skew-symmetric and bilinear with nonzero kernel. We claim this
forces TpM , which is a finite-dimensional vector space, to be even-dimensional. This
would in turn force M to be even-dimensional as well.

We will use a Gram-Schmidt-eqsue argument. Take any v1 ∈ TpM , and take
some w1 ∈ TpM such that ωp (v1, w1) ̸= 0. Such a w1 must exist because ω is
non-degenerate, and w1 /∈ span{v1} because ωp is skew-symmetric. By rescaling
appropriately, we may assume ωp (v1, w1) = 1 without loss of generality.

Let V1 = span{v1, w1}, and let W1 = {v | ωp (v, w) = 0 ∀w ∈ V1}. By using
bilinearity, we see that for any a, b ∈ R,

ωp (av1 + bw1, v1) = −b
whereas

ωp (av1 + bw1, w1) = a.

Hence, if av1 + bw1 ∈ W1, a = b = 0. In other words, V1 ∩W1 = {0}. Finally, we can
apply a Gram-Schmidt like argument to “project” any vector v ∈ TpM down onto its
V1 and W1 components. Fix any such v, and let a = ωp (v, w1) and b = −ωp (v, v1).

1Recall that the pullback of a symplectic form is (φ∗ω′)(v, w) = ω′(φ(v), φ(w)).
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Then, a brief computation shows that v−av1−bw1 ∈ W1, and so we have decomposed
v into

v = (av1 + bw1) + (v − av1 − bw1) .

Since av1 + bw1 ∈ V1, we conclude that TpM = V1 ⊕W1.

We may repeat this argument on W1 to generate new subspaces V2 and W2, with
TpM = V1 ⊕ V2 ⊕W2, and then repeat this on W2, and so on and so forth until this
process terminates. Importantly, V1, V2, . . . are all 2-dimensional, so the dimension
of the Wi’s is decreasing. As TpM is finite-dimensional, this process must eventually
terminate, resulting in

TpM = V1 ⊕ · · · ⊕ Vn.

We conclude that dimTpM = dimM = 2n. □

This is actually a consequence of a more general result regarding skew-symmetric
bilinear forms on finite-dimensional vector spaces, which gives a similar decomposition
while accounting for a possible kernel. Again, this result highlights a sort of rigidity
of symplectic manifolds in the sense that not every manifold can admit a symplectic
form.

Importantly, we can use the above result to pick a “standard” basis for TpM based
on ωp. In particular, we can set the basis v1, . . . , vn, w1, . . . , wn such that ωp (vi, wi) =
1 for all 1 ≤ i ≤ n and ωp is zero for all other pairs of basis vectors. In fact, we can
produce our first example of a symplectic manifold using this idea. Simply take
R2n with the standard basis x1, . . . , xn, y1, . . . , yn (labelled slightly differently for
notational ease) and the symplectic form

ωstd =
n∑

i=1

dxi ∧ dyi.

Something unexpected about symplectic manifolds is that they all locally “resemble”
each other. For manifolds in general, this is far from true: no open neighbourhood
on S2 is isometric to R2 because their curvatures are different. In other words,
Riemannian manifolds have a rich variety of local structures, and this is manifested
in ideas like Gaussian and mean curvature. No such local invariants can exist on
symplectic manifolds, and that is thanks to the following result:

Theorem 3.4 (Darboux’s Theorem). Let (M,ω) be a symplectic manifold. For every
point p ∈M , there exist local coordinates x1, . . . , xn, y1, . . . , yn such that

ωp =
n∑

i=1

dxi ∧ dyi.

To reiterate, all symplectic manifolds locally look the same: you can always iden-
tify them with neighbourhood in (R2n, ωstd). However, they do have different global
properties, and one of them is the symplectic volume. If ω is a symplectic form on a
2n-dimensional manifoldM , then ωn is a volume form (a differential form of maximal
degree). Since ω is non-degenerate, it’s clear that ωn is nonzero.
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In particular, (M,ω) and (M ′, ω′) be symplectomorphic to each other. Then, their
“symplectic volumes” are equal, i.e.∫

M

ωn =

∫
M ′

(ω′)
n
.

This follows directly from the definition of a symplectomorphism. Notably, when
M ⊆ R2n with the symplectic form ωstd (with the appropriate restrictions), one can
check that ωn

std is a scalar multiple of the standard volume form for Rn.

There is a bit more subtlety when ω and ω′ aren’t globally induced by ωstd, in
which case there is no obvious relationship between the above volumes and our usual
Euclidean volumes. Nevertheless, the statement is still true:

Theorem 3.5. Let M and M ′ be symplectic manifolds, and suppose there exists an
embedding M ↪→M ′. Then, volM ≤ volM ′.

Here, vol refers to the usual sense of Riemannian volume, i.e. the integral of the
Riemannian volume form. This is a corollary of Liouville’s theorem, which is an
important theorem in the study of statistical and Hamiltonian mechanics.

This result also gives us a more formal motivation for Gromov’s non-squeezing
theorem. This monotonicity of volumes is necessary for symplectically embeddable
manifolds, but it’s not obvious whether or not it is sufficient. As it so turns out, it
isn’t. Even if M has a smaller volume than M ′, there may not be any symplectic
embeddings M ↪→ M ′, and this loosely boils down to factors such as the “shape” or
“width” of M and M ′.

4. Almost-Complex Structures

We will now take a slight detour and look at almost-complex structures. Similar
to symplectic forms and manifolds, almost-complex structures have some motivation
from physics. Specifically, certain Hamiltonian systems induce systems of differential
equations that strongly resemble the Cauchy-Riemann equations. For more detailed
discussion on the physics and mechanics buttressing symplectic geometry, we direct
the reader to [5].

Definition 4.1. Let M be a manifold, J : TM → TM . J is an almost-complex
structure it varies smoothly over M and if for all points p ∈ M , Jp : TpM → TpM
is a linear automorphism such that J2

p = −Id. The pair (M,J) is called an almost-
complex manifold.

Almost-complex structures are generalisations of multiplication by i, and it’s easy
to see that these ideas coincide for complex manifolds.

Much like symplectic forms, not every manifold can admit an almost-complex struc-
ture, and we get a similar result regarding the dimensions of such manifolds.

Proposition 4.2. Let (M,J) be an almost-complex manifold. Then, M is even-
dimensional (with respect to R).
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Proof. Treating M as a real manifold again, fix any p ∈M and consider Jp : TpM →
TpM . Let n = dimTpM . As Jp is an R-linear map, det Jp is real. However, since

J2
p = −Id, we have that det

(
J2
p

)
= (det Jp)

2 = (−1)n. It follows that n must be
even. □

Notably, complex manifolds have two choices of an almost-complex structure,
namely multiplication by either i or by −i. One interpretation of this is that ±i
represent two different “orientations” of complex manifolds. Generally speaking, for
any almost-complex structure J , −J is also an almost-complex structure, and this
demonstrates a sort of handedness present in the construct. Symplectic forms also
exhibit an inherent notion of orientation because of their skew-symmetry, and so it
makes sense to ask about what happens when these two senses of orientation are
compatible with each other.

Definition 4.3. Let (M,ω) be a symplectic manifold, and let J be an almost-complex
structure on M . J is ω-tame or tamed by ω if ω(v, Jv) is positive-definite for all
v ∈ TM . J is ω-compatible if it is ω-tame and

ω(Jv, Jw) = ω(v, w)

for all v, w ∈ TM .

Notably, the condition that ω (Jv, Jw) = ω(v, w) is equivalent to the condition
that (v, w) 7→ ω(Jv, w) is a Riemannian metric, i.e. that it is positive-definite and
symmetric.

Returning to some results established regarding symplectic and almost-complex
structures on vector spaces, we can obtain a crucially important result about J (M,ω),
the space of ω-compatible almost-complex structures onM , as well as about Jτ (M,ω),
the space of ω-tame almost-complex structures on M .

Theorem 4.4. J (M,ω) and Jτ (M,ω) are both nonempty and contractible with re-
spect to the C∞ topology (cf. Theorem 2.6).

A crucial and important corollary is that J (M,ω) is connected. The proof of this
theorem is much more involved than the same contractibility statement for symplectic
vector spaces, and we direct the reader to [5] for a complete proof.

The nonemptiness of these spaces is the same thing as saying that every symplec-
tic manifold admits an almost-complex structure, and this is critically important in
applying the soon-to-be-developed theory of pseudoholomorphic curves to symplectic
geometry. It turns out that manifolds equipped with almost-complex structures al-
ways admit skew-symmetric non-degenerate 2-forms, though they may not be closed.
This is called an almost-symplectic form, and the resulting structure is called an
almost-Kähler manifold. One cannot even guarantee that a complex structure on
a manifold induces a symplectic form, and an example of this is the Hopf surface
S1 × S3. [2] gives a fuller discussion of examples and counterexamples in chapter
17.3.
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5. Pseudoholomorphic Curves

Recall the notion of a holomorphic curve f : U → C where U ⊆ C open can be char-
acterized by many ways: being analytic, satisfying the Cauchy-Riemann equations,
and so forth, and by the end, we find that many of these notions are equivalent. If we
wanted to consider multi-valued holomorphic curves, then we can take U ⊆ Cm open,
a smooth map f : U → Cn, and say that f is holomorphic if its partial derivatives
∂jf exist for all j = 1, . . . ,m. That is, if h ∈ Cm, we have the existence of

lim
h→0

f(z1, . . . , zj + h, . . . , zm)− f(z1, . . . , zm)

h

for all j. The verification of the existence of this theorem is tedious and often infea-
sible. Fortunately, the structure and rigidity of complex numbers allow us to reduce
the condition for complex differentiability to the familiar Cauchy-Riemann equations.

To see this, let us identify Cn with R2n by viewing (z1, . . . , zn) ∈ Cn as the real
vector (x1, y1, . . . , xn, yn) ∈ R2n where zj = xj + iyj. Then for all z ∈ U ⊆ Cm, we
get a differential df(z) : Cm → Cn. This is exactly a real linear map from R2m to
R2n as we saw in Section 2.2. For all λ ∈ C, scalar multiplication z 7→ λz can be
treated as a real linear map from R2n to itself. It turns out that f being holomorphic
is equivalent to its differential df(z) being complex linear; that is,

df(z)(λv) = λdf(z)v

for all v ∈ Cm and λ ∈ C. As we already have real linearity, it remains to satisfy

df(z) ◦ (i·) = idf(z)(·)(1)

as linear maps on R2n or R2m. If f : U → Cn is smooth, we can write f(z1, . . . , zn) =
u(x1, . . . , xn) + iv(y1, . . . , yn) with zj = xj + iyj and the Cauchy Riemann equations
generalize nicely to

∂u

∂xj
=

∂v

∂yj
and

∂u

∂yj
= − ∂v

∂xj
.

In fact, these are equivalent to satisfying (1) and complex linearity.

This strongly resembles the almost-complex structures that we have shown ear-
lier. In particular, mapping ∂

∂xn
7→ ∂

∂yn
and ∂

∂yn
7→ − ∂

∂xn
is a skew-symmetric non-

degenerate closed linear operation on TU , and it squares to −1!

Recall that if (M,J) is an almost complex manifold, we use the terminology almost
because complex manifolds always admit a complex structure (via multiplication by i
on TM), but the converse does not necessarily hold. More precisely, if M is instead a
complex manifold, then any choice of holomorphic coordinates on U ⊆M will identify
the tangent spaces TpU with Cn and we can assign the standard complex structure
to each TpU . Moreover, this assignment is independent on the coordinates so M has
a natural almost complex structure that looks like the standard one in any chart. We
call such an almost complex structure integrable.
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As a result from the preceeding discussion, a Riemann surface can be viewed as
a complex manifold of complex dimension 1 and thus admits an integrable complex
structure.

Definition 5.1 (Pseudoholomorphic). Suppose (Σ, j) is a Riemann surface, and
(M,J) is an almost complex manifold. A smooth map u : Σ → M is pseudoholo-
morphic or J-holomorphic if its differential is complex linear at every point. That
is,

du(z) ◦ j = J ◦ du(z).(2)

Observe that (2) is a non-linear first order PDE called the non-linear Cauchy Rie-
mann equation. One can rewrite this using holomorphic local coordinate patches on
Σ to turn it into a more familiar form as follows. Let x + iy by a local holomorphic
chart on Σ so, supposing j is integrable, j∂x = ∂y and j∂y = −∂x. Then locally, (2)
is saying

∂xu+ J(u)∂yu = 0.

The standard Cauchy-Riemann equations can be written ∂xu + i∂yu = 0 so we can
view the above as a perturbation of the standard equation. Indeed, we can choose
coordinates near p ∈M so J(p) can be identified with the standard complex structure
and we truly have the above as a small local perturbation.

It is well-known that holomorphic functions between Riemann surfaces are very
rigid: well-behaved singularities can be removed or filled in, they have unique contin-
uations, and they have harmonic real components, to name a few properties. When
f is a pseudoholorphic curve between two truly complex structures on complex mani-
folds, the above definition coincides with the usual notion of holomorphicity, and f of
course retains these nice, rigid properties. However, even when the almost-complex
manifolds do not admit actual complex structures, f continues to enjoy powerful
properties of rigidity.

Theorem 5.2. Suppose (M,J) is a smooth almost complex manifold. Then

• (Regularity) Every map u ∈ C1(Σ,M) solving (1) is smooth.
• (Local Existence) For all p ∈ M and v ∈ TpM , there exists a neighborhood
U ⊆ C of the origin and a pseudoholomorphic curve u : U → M such that
u(0) = p and ∂xu = v in the standard coordinates x+ iy ∈ U .

• (Intersections) Suppose u1 : Σ1 → M and u2 : Σ2 → M are two non-constant
pseudoholomorphic functions with intersection u1(z1) = u2(z2). Then there
exist neighborhoods U1 ⊆ Σ1 and U2 ⊆ Σ2 of z1 and z2 respectively such that
the images u1(U1 \ {z1}) and u2(U2 \ {z2}) are either identical or disjoint.

For complete proofs, we direct the reader to [6] and [9]. The last property on
intersections is similar to the familiar property of unique analytic continuation, and
it can be rephrased as saying that the set of points where u1 and u2 coincide cannot
accumulate anywhere unless u1 and u2 are identical.
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Another important regularity theorem is somewhat reminiscent of how univalent
functions can only converge to other univalent functions or to constant functions.

Proposition 5.3. Suppose Jk is a sequence of almost-complex structures on a man-
ifold M that converges to another almost-complex structure J on M . Let fk be a
sequence of non-constant pseudoholomorphic curves on M with respect to Jk that
converges in C∞ to f , a pseudoholomorphic curve on M with respect to J . Then, f
is non-constant.

5.1. Energy. Another important quantity of a pseudoholomorphic curve is its en-
ergy. This is closely related to the 2-dimensional notion of area of a curve. This has
connections with tameness and compatibility as discussed in Section 4.3.

For holomorphic curves in Cn, the area they trace can be found by integrating the
standard symplectic structure. To generalize this, suppose (M,ω) is a symplectic
manifold, J ∈ Jτ (TM,ω) and gJ is the bundle metric

gJ(v, w) =
1

2
[ω(v, Jw) + ω(w, Jv)] .

If u : (Σ, j) → (M,J) is a pseudoholomorphic curve and we choose holomorphic
coordinates (x, y) on a subset of Σ, then ∂yu = J∂xu implies the vectors ∂xu and ∂yu
are orthogonal and have the same length under gJ . Thus, the area spanned by them
is

∥∂xu∥gJ · ∥∂yu∥gJ = ∥∂xu∥2gJ = ω(∂xu, J∂xu) = ω(∂xu, ∂yu)

so the area under gJ is

AreagJ (u) =

∫
Σ

u∗ω.

This motivates the following definition of energy.

Definition 5.4 (Energy). Suppose (M,ω) is a symplectic manifold and J ∈ Jτ (TM,ω)
is a tame almost-complex structure. The (harmonic) energy of a pseudoholomorphic
curve u : (Σ, j) → (M,J) is the quantity

E(u) :=

∫
Σ

u∗ω.

Observe that E(u) ≥ 0 with equality holding if and only if u is constant when we
restrict u to each connected component of Σ. These distinguish pseudoholomorphic
curves in symplectic manifolds from those in general almost-complex ones. In the
former case, the energy is a topological invariant that depends only on a characteristic
of the curve (namely, its homology class) and so we can obtain a universal bound.
But in the case of almost-complex manifolds, we have no a priori bound, but we can
still establish them as we go.

For notation, let us introduce a Cauchy-Riemann operator. If we take coordinates
z = x+ iy on Σ, which we also endow with a volume form volΣ, the 1-form, ∂J(u) is
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given by

∂J(u) =
1

2
(∂xuα + J(uα)∂yuα) dx+

1

2
(∂yuα − J(uα)∂xuα) dy.

Now we may introduce an important identity for the energy of a map.

Lemma 5.5. Let (M,ω) be a symplectic manifold. If J is tamed by ω, then for all
pseudoholomorphic u : Σ →M ,

E(u) =
1

2

∫
Σ

∥du∥2J dvolΣ

where the norm of the linear map du(z) : TzΣ → Tu(z)Σ is

∥du∥2J =
1

|w|

√
∥du(z)w∥2J + ∥du(z)(jw)∥2J

for 0 ̸= w ∈ TzM . Moreover, if J is compatible with ω, then every smooth map
u : Σ →M satisfies

E(u) =

∫
Σ

∥∥∂J(u)∥∥2

J
dvolΣ +

∫
Σ

u∗ω.

Proof. Pick local coordinates z = x + iy in a neighborhood of p ∈ Σ, which we can
assume without loss of generality is an open subset of C. By rescaling z 7→ λz with
0 ̸= λ ∈ C, we can also tale dvolΣ = dx ∧ dy. Thus,

1

2
∥du∥2J dvolΣ =

1

2

(
∥∂xu∥2J + ∥∂yu∥2J

)
dx ∧ dy

=
1

2
∥∂xu+ J∂yu∥2J dx ∧ dy − ⟨∂xu, J∂yu⟩J dx ∧ dy

=
∥∥∂J(u)∥∥2

J
dvolΣ +

1

2
(ω(∂xu, ∂yu) + ω(J∂xu, J∂yu)) dx ∧ dy.

If J is tamed by ω and ∂xu+ J∂yu = 0, then the first term on the right vanishes and
the remaining term is equal to u∗ω. If J is compatible with ω, then the last term on
the right equals u∗ω and we have the claims. □

Further, pseudoholomorphic curves have a monotonicity proeprty. Let us specialize
to the case when u maps into a Euclidean ball and is a nonconstant holomorphic map
which is proper; i.e., u−1 takes compact sets to compact sets. Denote B2n(r0) to be
the Euclidean ball of radius r0 in R2n.

Theorem 5.6 (Monotonicity). Let r0 > 0, (Σ, j) be a Riemann surface, and u :
(Σ, j) → (B2n(r0), i) be a nonconstant proper holomorphic map. Then for all 0 < r <
r0,

πr2 ≤
∫
u−1(B2n(r0))

u∗ωstd.
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The most important consequence of introducing the energy of these pseudoholo-
morphic maps is that area is closely related with our notion of energy and pseudo-
holomorphic curves can minimize these quantities (in their homology class). This is
a special case of general results from the theory of minimal surfaces which we cannot
currently develop here. One key fact in the proof of Gromov’s non-squeezing theorem
relies on the following observation using minimal surfaces:

Theorem 5.7. Suppose (M,ω) is a closed symplectic manifold of dimenension 2n−
2 ≥ 2 with homotopy group π2(M) = 0, σ an area form on S2, and there exists a
symplectic embedding

ι :
(
B2n(r), ωstd

)
↪→ (S2 ×M,σ ⊕ ωstd)

Then πr2 ≤
∫
S2 σ.

Theorem 5.7 can be proven as a corollary of Theorem 5.6 but also requires some
results from homotopy and homology theory which we refer to [9] for.

We will also appeal to an analogue of Riemann’s theorem on removable singularities
of holomorphic functions.

Theorem 5.8. Let U ⊂ C be open, let (M,ω) be an almost-complex manifold, J an
ω-tame almost-complex structure, a ∈ U , and let f : U \ {a} → M be a pseudoholo-
morphic curve (with the standard complex structure on U). If f has finite energy and

im f ⊆M is compact, then f extends pseudoholomorphically to f̃ : U →M .

Proof. For this, we will follow [6] and prove a continuous extension. Suppose without
loss of generality that U = D, the unit disc, and that a = 0. Let γr be the closed loop
parameterised by γr(t) := f (reit) for t ∈ [0, 2π], r ∈ (0, 1). Since the energy is finite,
we can write

E(f) =

∫ 1

0

∫ 2π

0

|γ′r(t)|2

r2
rdr ∧ dθ.

Here, the length of γ′r is given by the Riemannian metric induced by the ω-tame
almost-complex structure. Using the Cauchy-Schwarz inequality, we can bound this
by

E(f) ≥
∫ 1

0

|γr|2

2πr
dr,

where |γr| is the arc length of γr. Since E(f) is finite, we see that there must be a
sequence of radii rn decreasing to zero such that |γrn| → 0 as well.

By compactness of the image of f , there must be a subsequence of radii rm such
that the γrm uniformly converges to a single point p ∈M .

Now suppose towards a contradiction that for some sequence zk, f(zk) → q ̸= p.
Let 0 < δ ≪ d(p, q) small. Then, for all 0 < r < r0 sufficiently small, there γr
intersects both B(p, δ) and B(q, δ), giving us that |γr|2 ≥ cδ2 for some fixed positive
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constant c. Using the above integral estimate, this then gives us that

E(f) ≥
∫ 1

0

|γr|2

2πr
dr ≥

∫ r0

0

cδ2

2πr
dr = ∞,

which contradicts f having finite energy. Therefore, f extends continuously to U . □

We’ll remark here that this proof subtly relies on the fact that pseudoholomorphic
curves minimise areas. This is present in our argument that the length of γr for
sufficiently small r is uniformly bounded from below; non-minimal surfaces may not
have this property. The continuous extension is used to show that f extends fully to
a pseudoholomorphic curve on U , though this is significantly more involved and relies
on machinery such as the elliptic regularity theorem. For the full proof, we refer the
reader to [1].

Finally, the ability to remove well-behaved singularities establishes a powerful com-
pactness theorem on the space of pseudoholomorphic curves, known as Gromov com-
pactness. For the sake of brevity, we will not fully state all of the definitions neces-
sary to define Gromov convergence, stable maps, and the compactness theorem itself.
Many standard texts do cover the theorem, as it is important to the study of pseudo-
holomorphic curves; for a more complete discussion of the Gromov topology on the
moduli spaces of pseudoholomorphic curves, we direct the reader to [6]. However, we
will still provide a brief overview of the theorem and its intuition.

Theorem 5.9. If (M,ω) is a symplectic manifold, Jn a sequence of ω-compatible
almost-complex structures converging to J in C∞, and fn : S2 → M a sequence of
pseudoholomorphic maps with respect to Jn with uniformly bounded energy, then fn
Gromov converges to a stable map with respect to J .

Stable maps are, in essence, a collection of pseudoholomorphic maps defined on
tangent spheres. These spheres are not allowed to form “cycles”, and the points of
tangency correspond to overlapping images of the corresponding pseudoholomorphic
maps. More broadly, stable maps represent the ways in which convergence of pseu-
doholomorphic functions can fail. These failures are called “bubbles”, and handling
these bubbling events can be done by analysing the energy of each bubble indepen-
dently. Not all of these “bubbles” need to be problematic, however; a constant bubble
does not represent a failure of convergence, for instance.

Gromov convergence is stronger than typical notions of convergence. First and
foremost, the parameterisation of the fn’s is not of any interest; rather it is the
image of the fn’s that is being considered. Hence, one condition for convergence is
that fn ◦ ϕn converges locally uniformly on compact sets of S2 for some collection
ϕn of Möbius automorphisms of S2. In other words, some reparameterisation of fn
converges in the usual sense.

Gromov convergence also stipulates some relations on the sequence of fn’s on each
of the bubbles that pop up. For one, energy is not allowed to dissipate from the
bubbling sites; this ensures that the limit of fn still retains much of the geometric
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information of the images of each fn and does not collapse or “pinch off”. The full
conditions are much more technical, and again, we refer the reader to [6] for a more
accurate and complete discussion of these notions.

6. Gromov’s Non-Squeezing Theorem and Concluding Remarks

We will now turn our attention to Gromov’s non-squeezing theorem, which is a
central theorem in modern symplectic geometry.

Theorem 6.1. Suppose there is a symplectic embedding of

B2n(r) := {(x1, . . . , x2n) :
2n∑
j=1

x2j ≤ r} ⊂ R2n

into

Z2n(R) := {(x1, . . . , x2n) : x21 + x22 ≤ R} ⊂ R2n.

Then, r ≤ R.

Notably, the symplectic forms given to these manifolds is not determined. At least
one symplectic form exists, and it is the one inherited from the ambient space R2n.
However, these may not be compatible with each other.

We shall follow [7] and [9] for this proof outline. Suppose that such an embedding
B2n(r) ↪→ Z2n(R) really does exist. The image of B2n(r) must be compact, and so
by rewriting Z2n(R) as B2(R) × R2n−2, we can actually embed B2n(r) further into
S2 × T 2n−2, where T 2n−2 := R2n−2/NZ2n−2 for sufficiently large N . Importantly, the
symplectic structure of R2n−2 factors through the quotient because ωstd is unaffected
by the action of NZ2n−2.

The symplectic structure of S2 is not as obvious or natural; it is instead obtained by
“wrapping” the disc B2(R) onto the unit sphere S2 equipped with an appropriately
scaled symplectic form σ, which is also an area form, so that the areas are preserved.
This step is actually quite subtle, and for any ϵ > 0, an area form σϵ is chosen such
that ∫

S2

σϵ = π(R + ϵ)2.

These symplectic embeddings actually do exist and are easier to write down and
work with. Then, one lets ϵ→ 0 in the final inequality. We shall omit this detail for
notational clarity.

Let ι : B2n(r) ↪→ S2 × T 2n−2 be the extended embedding. Let J0 be the almost-
complex structure compatible with the above symplectic form on S2×T 2n−2. This may
not agree with the almost-complex structure of ι (B2n(r)) induced by its symplectic
form, which we will call J1. Since the space of almost-complex structures on any
symplectic manifold is contractible, we may pick a continuous path Jt between J0
and J1, where t varies over [0, 1].
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The next step applies topological arguments about homologous curves from the
Riemann sphere into B2(R)× T 2n−2, and this argument will be omitted because the
fundamentals necessary were not developed here. The main idea is that by taking
certain moduli spaces of pseudoholomorphic functions (with respect to Jt), one can
construct a pseudoholomorphic function f : Σ → B2n(r) passing through the origin,
where Σ is a Riemann surface and f(Σ) is contained on the boundary of B2n(r). At
the same time, however, it can be shown that ι ◦ f(Σ) falls into a circular “slice” of
S2 × T 2n−2 with area no more than πR2.

A crucial facet of this argument is the Gromov compactness theorem, which (loosely)
ensures that the moduli spaces above can be compactified nicely. Pseudoholomorphic
functions need not converge to other pseudoholomorphic functions. Namely, these
limits may have singularities in the form of “bubbles” and “nodes”. Fortunately,
these cases can be excluded in this theorem by analysing certain bounds on the ener-
gies introduced by such singularities and obtaining a contradiction. A more precise
formulation of this argument can be found in [9].

To conclude the proof, we restate the fact that f(Σ) is a pseudoholomorphic curve
in B2n(r) that contains the origin, whose boundary lies on ∂B2n(r), and whose area is
πR2. If R < r, this is impossible because pseudoholomorphic curves minimise areas.
This argument is geometric and intuitive: if a loop on ∂B2n(r) has area less than
πr2, then it must lie entirely in one hemisphere of that sphere. However, if f(Σ) is
minimal as well, it cannot contain the origin. Hence, it follows that r ≤ R, concluding
the proof.

This concludes our discussion of how pseudoholomorphic curves play an integral
role in the modern study of symplectic manifolds, specifically in the proof of Gromov’s
non-squeezing theorem. Some facets of the proof regrettably had to be omitted; they
utilised tools from algebraic topology that would have been impossible to develop
alongside our discussion of symplectic geometry and pseudoholomorphic curves. For
a full proof, we refer the reader to [9] or even [4]. Symplectic geometry and the study
of pseudoholomorphic curves are both also immensely rich fields of study, and we
encourage readers to read [5] and [2] for more thorough coverage of each topic.

Gromov’s non-squeezing theorem itself is a surprisingly intuitive yet deep theorem
regarding the existence of global invariants of symplectic manifolds. One such invari-
ant is the Gromov width of a symplectic manifold, which is informally the largest
ball one can symplectically embed in a given symplectic manifold. These invariants
are also called symplectic capacities, and this name may be more suiting because of
desirable monotonicity and non-degeneracy properties one may want them to have.
Again, symplectic capacities have been shown to exist independently of Gromov’s
non-squeezing theorem and can therefore be used to prove the theorem itself. This
method of proof relies more heavily on the tools of Hamiltonian dynamics, however,
and for a fuller discussion of this perspective, we again direct the reader to [5]. De-
spite the gaps in our coverage, we hope that this discussion was able to capture the
richness of symplectic geometry from a purely mathematical viewpoint and hint at
their importance in other applied fields of mathematics, namely physics.
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